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Boğaziçi University

2017



ii

MODELING BOUNDED DATA WITH SUM CONDITIONED

POISSON FACTORIZATION

APPROVED BY:

Assoc. Prof. Ali Taylan Cemgil . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Assoc. Prof. Albert Ali Salah . . . . . . . . . . . . . . . . . . .

Assist. Prof. Sinan Yıldırım . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 03.08.2017



iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Ali Taylan Cemgil for his patience

and guidance throughout this study. I am also grateful to Assoc. Prof. Albert Ali Salah

and Assist. Prof. Sinan Yıldırım for participating in my thesis committee and their

valuable feedback they have provided for this thesis. Moreover, I would like to express

my sincere gratitude to Prof. Dr. Bülent Sankur for his interests and support during

my graduate studies.

I feel truly lucky to share the same office with Çağatay Yıldız and Barış Kurt,
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ABSTRACT

MODELING BOUNDED DATA WITH SUM

CONDITIONED

POISSON FACTORIZATION

Non-negative matrices appears in many domains from item recommendation,

audio signal processing to computer vision in which data instances have a bounded

non-negative range. For various tasks in these areas, probabilistic approaches have

been widely applied where matrix factorizations are among the state-of-the-art meth-

ods. A particular one is a latent variable model called Poisson Factorization which

models bounded data with Poisson distribution assigning them unbounded ranges. In

this work, we extend Poisson Factorization to model bounded data with bounded dis-

tributions such as Bernoulli, Binomial, Categorical and Multinomial. The resulting

model is named as Sum Conditioned Poisson Factorization as the model is constructed

by conditioning multiple Poisson Factorizations on their sum.

We present two algorithms for inference in Sum Conditioned Poisson Factoriza-

tion: Gibbs sampler and Expectation-Maximization. The algorithms and the model

are tested with simulated and real data sets. First, we compare the algorithms with

data generated from the model synthetically. Then, we demonstrate the interpretabil-

ity of the model on a binary valued data set named Swimmer. In order to measure

the performance of the model on ordinal ratings data, we use MovieLens 500-K. The

results indicate that the proposed model outperforms Poisson Factorization and other

models in terms of predictive performance for test ratings and top-K recommendation.

Finally, we conduct experiments on piano roll data extracted from Bach Chorales for

investigating the use of the model in time series. The experiments reveal that the model

provides parameters that can be used for prior distribution in time series analysis.
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ÖZET

SINIRLI VERİYİ TOPLAMA KOŞULLU POİSSON

AYRIŞTIRMA İLE MODELLEME

Negatif olmayan matrisler, veri örneklerinin negatif olmayan sınırlı değerler aldığı

kalem önerme ve ses sinyali işleme gibi birçok alanda karşımıza çıkmaktadır. Olasılıksal

yaklaşımlar bu alanlardaki birçok görev için kullanılmakta ve matris ayrıştırma mod-

elleri bu alandaki en ileri metodlar arasında yer almaktadır. Bunlardan biri Poisson

Ayrıştırma adında gözlemleri Poission dağılımıyla modelleyen bir saklı değişken mode-

lidir. Ancak bu şekilde, değer aralığı sınırlı olan gözlemlere, Poisson dağılımıyla sınırlı

olmayan değer aralığı verilmektedir. Bu çalışmada, Poisson Ayrıştırma genişletilmiş

ve gözlemler Bernoulli, İkiterimli, Kategorik ve Çok terimli gibi sınırlı değer aralığına

sahip dağılımlarla modellenmiştir. Ortaya çıkan model, birçok Poisson Ayrıştırmanın,

kendilerinin toplamlarına koşullandırılmasıyla oluşturulduğundan Toplama Koşullu Pois-

son Ayrıştırması olarak adlandırılmıştır.

Toplama Koşullu Poisson Ayrıştırması modelinde çıkarım için iki algoritma sunuy-

oruz: Gibbs örnekleyicisi ve Beklenti-Enbüyütme. Algoritmalar ve model, benzeştirilmiş

ve gerçek veri kümeleriyle test edilmiştir. İlk olarak, üretici modellen elde edilen

sentetik veriyle, iki algoritmayı kıyaslıyoruz. Daha sonra, Swimmer adında bir veri

kümesinde modelin yorumlanabilirliğini gösteriyoruz. Modelin sıralama ölçekli puan-

lama verisindeki performansı ölçmek içinse MovieLens 500-K adında kullanıcı film

puan veri setini kullanıyoruz. Sonuçlar önerilen modelin, mevcut diğer modellerden

test puanlarını tahmin etmede ve üst-K önermede daha üstün olduğunu gösteriyor.

Son olarak, modelin zaman serisindeki kullanımını araştırmak için Bach Korallerinden

çıkarılan piyano rulo verisiyle deney yapıyoruz. Burada, modelin zaman serisi anal-

izinde önsel dağılımlar için kullanılabilecek parametreler sağladığını göstermekteyiz.
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1. INTRODUCTION

During the last decades, tremendous amounts of data have became available. One

interesting and popular type of data is dyadic data which consists of measurements on

pairs where the observed measurement xi,j is assumed to carry information about the

interaction of i and j. For instance, xi,j can be the rating of movie j given by user i.

Dyadic data can be modeled with latent variable models where latent or hidden

variables are used to represent the underlying structures in data. These models assume

that data instances are realizations of observed variables which are conditioned on

hidden variables. Hence, even though latent variables are hidden and can not be

observed directly, they can be inferred given observed variables.

Matrix factorization models can be seen as latent variable models which decom-

poses a given dyadic data into its factors. As data is often available in matrix form,

these models can be used in diversed array of applications. In image processing, a

matrix might consist of coefficients where x-axis and y-axis represent samples and fea-

tures, respectively. Movie ratings can also be used with matrix factorization models

where x-axis and y-axis denote users and movies, respectively. Text processing is an-

other research area where matrices may be constructed by word counts in which x-axis

and y-axis correspond to text documents and words, respectively. For audio processing

applications, entries of matrices might be designed to include Fourier coefficients where

x-axis and y-axis represent time and frequencies, respectively.

For modeling non-negative dyadic data, one popular matrix factorization model

is Nonnegative Matrix Factorization (NMF). NMF models have been widely used in

various domains including text mining [1, 2], computer vision [3, 4], document clus-

tering [5, 6], audio signal processing [7–13], video processing [14–17], bioinformat-

ics [18–21], community discovery [22,23] and item recommendation [24,25]. Generally,

two problems are of interest in NMF: (i) exploration and (ii) prediction. In the first

one, the goal is to understand the underlying structure of data thanks to the inter-
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pretability of the model. For the latter, the task is to predict unobserved or unknown

entries of data.

NMF is often able to solve the aforementioned problems by providing inter-

pretable factors and accurate estimates of data. For modeling bounded data such

as binary, categorical or ordinal, NMF with Kullback-Leibler divergence, also known

as Poisson Factorization (PF), is one of the state-of-the-art methods. However, it

might not be the best choice since NMF models observations with Poisson distribution

assuming data instances are unbounded. On the other hand, to model bounded data

alternative approaches to KL-NMF (PF) can be found in the literature. [26–29] But,

they suffer from the interpretability issue since inferred components are difficult to

analyze.

1.1. Scope of the Thesis

In this thesis, we propose a simple extension to KL-NMF (PF) to model bounded

data such as Bernoulli, Binomial, Categorical and Multinomial. The resulting model

still provides interpretable factors for understanding a given data set and performs a

higher accuracy as shown in the experiments.

The main contribution of this thesis can be summarized as follows:

• Sum Conditioned Poisson Factorizatoin (SCPF): We first describe our model from

a statistical perspective. We further derive algorithms for inference of latent

variables in the model and present efficient and generic implementation of the

algorithms.

• Comparison of Gibbs sampler and EM algorithm: We compare two methods on

a synthetic data set generated from the model.

• Interpretability: We conduct binary matrix factorization experiments on a binary

data set to show interpretability of factors in the model.

• Predictive performance: We demonstrate the predictive performance of our model

on matrix-completion problem.
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1.2. Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 provides theoretical

background needed to understand the model and the inference methods. Chapter 3

describes Sum Conditioned Poisson Factorization (SCPF) and discusses its properties.

A detailed analysis of the inference for the model is given in Chapter 4. The experi-

ments are presented in Chapter 5. Finally, the thesis is concluded and further research

directions are explained.
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2. THEORETICAL BACKGROUND

This chapter contains theoretical background to understand the work in the the-

sis. First, we describe Poisson Factorization (PF) which the proposed model is built

upon. Then, we present introductory information on the algorithms used for inference

in the proposed model.

2.1. Poisson Factorization

Non-negative Matrix Factorization (NMF) was introduced as positive matrix fac-

torization by Paatero and Tapper [30] and popularized by Lee and Seung as an al-

ternative method to Principal Component Analysis (PCA) and Vector Quantization

(VQ) for facial image analysis and semantic analysis of documents [3]. In NMF, given

non-negative data matrix X, the goal is to find two non-negative matrices W and H

such that multiplication of matrices approximates X:

X ≈ WH

where W and H are referred as Template and Excitation matrices, respectively.

General usages of NMF includes feature learning, topic discovery, clustering, tem-

poral segmentation, filtering and source separation.

Figure 2.1. NMF as a matrix decomposition model. X, W and H are non-negative

data, Template and Excitation matrices respectively.
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NMF can also be cast to a optimization problem:

(W ∗, H∗) = argmin
W,H

D(X||WH)

where the error function D is a divergence.

Cemgil described NMF from a statistical perspective with Kullback-Leibler (KL)

divergence as an error measure, allowing full Bayesian treatment of the model [4]. KL-

NMF is also be known as Poisson Factorization (PF) in the literature. Gopalan et.

al. proposes a hierarchical PF with a variational inference algorithm that scales up

to massive data sets [31]. In [32], it is extended to a Bayesian nonparametric model

which outperforms its parametric counterpart. These models generally assume that the

latent factors are static. Charlin addresses this issue and presents Dynamic Poisson

Factorization which models time evolving latent factors [33].

Each basis vector in Template matrix, each column of W , represents a fundamen-

tal characteristics in data. For example, consider the data in Figure 2.2, packet type

histograms collected from a SIP network where rows and columns denote features and

time, respectively. In this application, inferred basis vectors in W represent certain

packet types histograms generated when a certain action in network is taken. Here,

the basis vector with column id 2 stands for actions in which a user initiates a call to

another by sending INVITE packets to a server. The entries of the Excitation matrix

denotes the contribution of the corresponding behaviors to approximation.

PF can be interpreted in various ways one of which is as a feature extraction

method. Inferred Template matrix contains local features extracted from a data set.

Hence, corresponding vectors in Excitation matrix can be seen as feature vectors which

are actually linear combinations of local features in Excitation matrix. PF can be also

interpreted as a low-rank approximation method as dimension of the Template matrix

is typically chosen as lower than dimension of the original data.
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≈

Figure 2.2. The first plot visualizes a network data, packet type histograms collected

from a SIP network. The rest corresponds to template and excitation matrices

inferred by PF, respectively.

Formal description of the model can be given as follows: Let X be a I × J sized

data matrix whose each entry xi,j corresponds to the data at ith row and jth column

where i = 1, 2, . . . , I and j = 1, 2, . . . , J . The goal is to approximate X with the

multiplication of two non-negative matrices W and H whose sizes are I×R and R×J ,

respectively, where R denotes the rank of decomposition. Each entry xi,j is modeled as

a sum of Poisson random variables which are denoted by si,j,1:R where R denotes the

number of hidden Poisson random variables. This allows xi,j to be a Poisson random

variable as well, whose intensity parameter λi,j is the sum of intensity parameters of

other Poisson random variables si,j,1:R. The intensity parameter of each Poisson random

variable si,j,r is given as the product of wi,r and hr,j. The non-negative entries in W

and H are modeled with Gamma random variables since the Gamma distribution is

the conjugate prior of Poisson distribution and its support is the set of non-negative

real numbers.

Hence, the generative model of PF can be given as follows:

wi,r ∼ G(wi,r; a
w, bw/aw) hr,j ∼ G(hr,j; a

h, bh/ah)

si,j,r ∼ PO(si,j,r;wi,r × hr,j) xi,j =
R∑

r=1

si,j,r
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where aw and bw/aw are the shape and scale parameters of Gamma distributions

used for the variables in W while ah and bh/ah are the shape and scale parameters

of Gamma distributions used for the variables in H. Note that this parameter choice

makes bw and bh mean parameters of Gamma distributions. Here, G(·) and PO(·)

denote Gamma and Poisson distributions which can be given as:

G(w; a, b/a) =
wa−1 exp(−w a

b
)

Γ(a)(b/a)a

PO(s;λ) =
λs exp(−λ)

s!

where a, b and λ are the shape, scale and intensity parameters, respectively.

From a Bayesian perspective, the goal becomes calculating the joint posterior

distribution of W and H given X. The multiplicative update rules in the original

NMF paper [3] appear as Maximum-Likelihood (ML) estimates of latent variables

with Expectation-Maximization (EM) algorithm for KL-NMF where priors on W and

H are omitted [4].

Various hierarchical PF models can be found in the literature. For instance,

Cemgil uses Variational Bayes and Gibbs sampler for inference in a hierarchical PF

model [4]. In [31], Gopalan et. al. developed a model named hierarchical Poisson

matrix factorization for recommendation in which variational inference is used for ap-

proximate posterior inference that scales up to massive data sets. Gopalan further

proposed a Bayesian nonparametric Poisson factorization model for model selection

where the latent components and the latent dimensionality are found simultaneously

with an efficient algorithm based on variational inference [32].

2.2. The Expectation-Maximization (EM) Algorithm

Suppose we are given a model with data X, latent variables Z and an unknown

parameter Θ. In order to estimate the unknown parameters, Maximum-Likelihood
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(ML) which is defined as follows:

Θ̂ML := argmax
Θ

p(X|Θ)

Whilst the former corresponds to finding parameter value that maximizes the marginal

likelihood.

Consider the ML estimation procedure in which the objective function can be

written as the marginalization of a joint distribution over the latent variables:

Θ̂ML = argmax
Θ

p(X|Θ))

= argmax
Θ

p(
∑

Z

p(X,Z|Θ))) (2.1)

where sum is used for the marginalization as we assume Z is discrete without loss of

generality.

The sum given in the Equation 2.1 is often intractable; however it is still possible

to find Θ̂ML using Expectation-Maximization (EM) procedure.

EM is an iterative algorithm to find the Maximum-Likelihood (ML) or Maximum-

A-Posteriori estimate of an unknown parameter in latent variable models [34]. At each

iteration, new estimates for the unknown parameter are calculated using observations

and current estimates of unknown parameter. This is carried out via finding parameter

value that maximizes the expectation of the likelihood function p(X,Z|Θ) with respect

to the posterior distribution of latent variables given current estimates. In order to show

this, we now proceed with EM derivations.

Note that as log(x) is a strictly increasing function, maximizing p(x|Θ) is equiv-

alent to maximizing log p(x|Θ). This in turn lets one use the log-likelihood function

which not only simplifies analysis but also provides a numerically more stable solution.
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Let us first write the log-likelihood:

log p(X|Θ) = log

(∑

Z

p(X,Z|Θ)

)

= log

(∑

Z

p(X,Z|Θ)
q(Z)

q(Z)

)

= log

(
E
[
p(X,Z|Θ)

q(Z)

]

q(Z)

)

where we multiply the equation by q(Z)
q(Z)

at the third line. Here, q(Z) is an arbitrary

function of random variables Z.

Recall that the Jensen’s inequality states that f(E
[
x
]
) ≥ E

[
f(x)

]
for a concave

function f(x). As log(x) is a concave function, we can derive the following thanks to

the Jensen’s inequality:

log p(X|Θ) = log

(
E
[
p(X,Z|Θ)

q(Z)

]

q(Z)

)

≥ E
[

log

(
p(X,Z|Θ)

q(Z)

)]

q(Z)

= E
[

log

(
p(X,Z|Θ)

)]

q(Z)

− E
[

log

(
q(Z)

)]

q(Z)

where the last term is the lower bound that EM maximizes at each iteration. The first

expectation is called energy, which is the expected complete data log-likelihood. The

second term is referred as entropy which is independent of Θ. Hence, maximizing the

lower bound is equivalent to maximizing expectation of complete data log-likelihood

w.r.t. q(Z).
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In classical EM derivations, the arbitrary function q(Z) is chosen as p(Z|X,Θ)

since it makes the bound tight:

E
[

log

(
p(X,Z|Θ)

q(Z)

)]

q(Z)

= E
[

log

(
p(X,Z|Θ)

p(Z|X,Θ)

)]

p(Z|X,Θ)

= E
[

log

(
p(X,Z|Θ)
p(Z,X|Θ)
p(X|Θ)

)

)]

p(Z|X,Θ)

= E
[

log
(
p(X|Θ)

)]

p(Z|X,Θ)

=
∑

Z

log
(
p(X|Θ)

)
p(Z|X,Θ)

= log
(
p(X|Θ)

)

The algorithm can be divided into 2 steps: Expectation (E) and Maximization

(M). In E-Step, one needs to calculate expectation of complete data log-likelihood w.r.t.

p(Z|X,Θ(t)) using previous estimates of unknown parameters. Then, unknown param-

eters are updated such that parameter values maximizing the expectation becomes new

estimations. Hence, the iterative procedure can be written as follows:

• Expectation Step (E-step)

Q(Θ|Θ(t)) = E
[

log p(X,Z|Θ)

]

p(Z|X,Θ(t))

• Maximization Step (M-step)

Θ(t+1) = argmax
Θ

Q(Θ|Θ(t))

where Θ(t) denotes estimates for the unknown parameter at iteration t.

In any step of EM algorithm, the log-likelihood never decreases. This can be

showed by using the KL divergence, which is a distance measure between two proba-
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bility distributions p(x) and q(x). We define the KL divergence as follows:

KL(p||q) = −
∫
p(x) log

q(x)

p(x)
dx

where KL(p||q) is always non-negative and equal to zero if and only if p(x) = q(x).

The energy term of the lower bound can be rewritten as:

E
[

log

(
p(X,Z|Θ)

q(Z)

)]

q(Z)

=
∑

Z

q(Z) log

(
p(X,Z|Θ)

q(Z)

)

=
∑

Z

q(Z) log

(
p(Z|X,Θ)p(X|Θ)

q(Z)

)

=
∑

Z

q(Z) log p(X|Θ) +
∑

Z

q(Z) log

(
p(Z|X,Θ)

q(Z)

)

= log p(X|Θ)−KL
(
q(Z)||p(Z|X,Θ)

)

where the first term is the log-likelihood and the second term is the KL divergence.

This means that, for fixed Θ, the lower bound is bounded above by the log-likelihood,

and achieves that bound when KL divergence is equal to 0. Hence, after an E-step, the

energy equals the log-likelihood. As M-step maximizes the energy w.r.t. Θ, EM never

decreases the log-likelihood.

2.3. The Gibbs Sampler Algorithm

Markov chain Monte Carlo (MCMC) methods are powerful statistical techniques

used to approximate intractable densities by a finite set of samples. Suppose we are

given a target distribution π(x). Given samples generated from the target distribution,

we can represent the analytically inexpressible distribution as follows:

π̃(x) =
1

M

M∑

i=1

δ(x− xi) (2.2)

where xi is sample at ith iteration and δ(·) is dirac delta function.
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Equation 2.2 allows calculating the expectation of a function f(x) under target

distribution π(x), which is not possible analytically. However, provided that the num-

ber of samples M is large enough, MCMC algorithms approximate true value of the

expectation thanks to the strong and weak laws of large numbers:

E
[
f(x)

]
π(x)

=

∫
f(x)π(x) dx (2.3)

≈ 1

M

M∑

i=1

f(xi) (2.4)

where xi is sample at ith iteration. This method is called Monte-Carlo integration in

the literature [35].

In order to calculate the integration given in 2.4, we need to be able to sample from

the target distribution, which is not possible in some cases as the target distribution

π(x) can be non-standard. Detailed analysis of MCMC methods is not in the scope of

this thesis; however more information can be found in the literature [36–39].

One well-known MCMC method is Gibbs sampling proposed by Geman and Ge-

man in [40]. After making an analogy between images and statistical systems, they

introduced Gibbs sampling as an image restoration method. An explanatory work on

the convergence of Gibbs sampler with introductory examples are given by Casella and

Geoerge in [41].

The idea in Gibbs sampling is to design an ergodic Markov chain whose stationary

distribution is the target distribution π(x). In order to define a Markov chain, one

needs to specify an initial probability distribution π(0)(x) and a transition probability

T (x′;x) [42]. The probability distribution of the state at the (t + 1)th iteration of the

chain is given as:

π(t+1)(x′) =

∫

x

π(t)(x)T (x′;x) dx
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Note that the chain must be ergodic and the desired distribution must be an

invariant distribution of the chain [39]. Also, the transition probabilities must have the

detailed balance property which implies invariance of π(x) under the chain [39].

Even though sampling from π(x) is not feasible in some cases, sampling from

full conditional distributions may be possible. After some iterations, burn-in period,

samples generated from full conditional distributions are treated as if they are generated

from π(x). This, in turn, allows calculating approximate estimates of statistics such as

expectations.

Consider sampling from the the joint distribution p(x, y1, y2, ..., yD), which might

be difficult to perform. Fortunately, Gibbs sampler provides an alternative procedure in

which one samples from full conditional distribution of each random variable iteratively.

Hence, sampling from p(x) can be achieved, and mean of p(x) can be calculated by

averaging samples of x:

E
[
x
]
≈ 1

M

M∑

i=1

X i

where X i is sample from full conditional distribution p(x|y1, y2, ..., yD) at iteration i.

In this example, a possible sampling scheme for Gibbs sampler is given in Algo-

rithm 2.3 which presents a recipe for calculating the expectation of x.
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Initialize X0, Y 0
1 , Y

0
2 , ..., Y

0
D randomly

for i = 1 to M do

X i ∼ p(xi|y1 = Y i−1
1 , y2 = Y i−1

2 , ..., yD = Y i−1
D );

Y i
1 ∼ p(yi1|x = X i, y2 = Y i−1

2 , ..., yD = Y i−1
D );

Y i
2 ∼ p(yi2|x = X i, y1 = Y i

1 , y3 = Y i−1
3 , ..., yD =

Y i−1
D );

...

Y i
D ∼ p(yiD|x = X i, y1 = Y i

1 , ..., yD−1 = Y i
D−1);

end for

E
[
x
]
≈ 1

M

∑M
i=1X

i;

Figure 2.3. Pseudo-code of Gibbs sampler for a toy example.
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3. PROPOSED MODEL

This chapter presents the Sum Conditioned Poisson Factorization (SCPF) model

which is an extension of PF described in Chapter 2.

3.1. Sum Conditioned Poisson Factorization

The model consists of K PF models and an observed cardinality matrix N which

contains the sum of observation matrices of PF models. A schematic description of

SCPF is given in Figure 3.1 where each cubic plot of Xk, Wk and Hk represents a PF.

s1,i,j,r

h1,r,j

w1,i,r

x1,i,j

sk,i,j,r

hk,r,j

wk,i,r

xk,i,j

sK,i,j,r

hK,r,j

wK,i,r

xK,i,j
S

H

W

X
i

j

r

ni,j

N =
∑

k Xki

j

. . . . . .

Figure 3.1. A schematic description of SCPF model.

In SCPF, each entry xk,i,j is still modeled as sum of Poisson random variables

of sk,i,j,1:Rk
. However, conditioned on ni,j, the random variables x:,i,j becomes coupled

across the k variable thanks to the well known property of Poisson distributions [43]:

conditioned on ni,j, the joint posterior p(x1,i,j, . . . , xK,i,j|ni,j) is multinomial with the

k’th cell probability given as µk/µ where µk is the intensity parameter of xk,i,j.
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The generative model of SCPF can be given as follows:

wk,i,r ∼ G(wk,i,r; a
w, bw/aw) hk,r,j ∼ G(hk,r,j; a

h, bh/ah)

sk,i,j,r ∼ PO(sk,i,j,r;wk,i,r × hk,r,j) xk,i,j =

Rk∑

r=1

sk,i,j,r

ni,j =
K∑

k=1

xk,i,j

where aw and bw/aw are the shape and scale parameters of Gamma distributions used

for the variables in W while ah and bh/ah are the shape and scale parameters of Gamma

distributions used for the variables in H. Note that this parameter choice makes bw

and bh mean parameters of Gamma distributions.

The cardinality matrix N is assumed to be always known such that ni,j is equal

to the cardinality of the discrete variable x:,i,j. Furthermore, for one-hot encoding

schema, K is the number of categories. With setting N and K, one can model data

with Bernoulli, Categorical, Binomial and Multinomial random variables.

Consider modeling a binary matrix. We set K to 2 and each entry ni,j to 1. The

conditional distribution p(x1,i,j|ni,j, w:,i,:, h:,:,j) becomes a Bernoulli distribution such

that:

p(x1,i,j|ni,j, w:,i,:, h:,:,j) = BE(x1,i,j;
w1,i,:h1,:,j

w1,i,:h1,:,j + w2,i,:h2,:,j

)

Similarly, other distributions can also be derived. For a categorical distribution,

we set K to the number of categories and let ni,j = 1, leading to the following distri-

bution:

p(xk,i,j|ni,j, w:,i,:, h:,:,j) = Cat(xk,i,j;
wk,i,:hk,:,j∑K
k=1wk,i,:hk,:,j

)
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For a binomial random variable with a range of {0, . . . , n}, we set K to 2 and

let ni,j = n. For a multinomial distribution with a range of {0, . . . , n}, we let K > 2

and ni,j = n. Table 3.1 summarizes the parameter choices for modeling with Bernoulli,

Categorical, Binomial and Multinomial random variables.

Table 3.1. Parameters for modeling multinomial data in SCPF.

K ni,j

Bernoulli 2 1

Categorical # categories 1

Binomial 2 >2

Multinomial # categories >2

For modeling missing data, we introduce a mask tensor M whose each entry mk,i,j

becomes 1 or 0 if xk,i,j is observed or missing, respectively. This allows us to define a

residual matrix Ñ where ñi,j = ni,j −
∑K

k=1 xk,i,jmk,i,j. The unobserved entries in X

models the residual matrix Ñ which can be seen as the rest of data.

Suppose we are given an ordinal data matrix Y such as movie ratings whose each

entry takes values in {1, . . . , n}. To model Y with SCPF, we can assign Y to x1,:,:,

first component of X, such that x1,i,j = Yi,j. In such a case, each entry of m1,:,:, first

component of mask tensor M , needs to be set to 1/0 for observed/missing entries. Also,

let K = 2 and ni,j = n for all variables. For the special case of K = 2, x2,:,:, second

component of X, can also be inferred since x2,i,j = n − x1,i,j. Here, the matrices x1,:,:

and x2,:,: can be interpreted as measures of likes and dislikes given by users to movies.

Note that when there is no missing entries in the original matrix Y , the model would

reduce to two independent PF models. However, missing entries makes corresponding

entry x1,i,k a Binomial random variable whose predictive distribution can be given as:

p(x1,i,j|ni,j, w:,i,:, h:,:,j) = BI(x1,i,j;ni,j,
w1,i,:h1,:,j

w1,i,:h1,:,j + w2,i,:h2,:,j

)
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We can also observe that, in this ordinal data case, the choice of K > 2 prevents

us from inferring other variables x2:K,i,j even if x1,i,k is observed.
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4. INFERENCE

For inference, we have investigated two methods: Expectation-Maximization

(EM) and Gibbs sampler. Initially, EM is described for fully observed data where

no missing entries exist so that the analogies to PF model can be easily established.

We then adopt the inference for missing entries in which the novelty of our model comes

into the play. Furthermore, we give an efficient implementation of the algorithm. In

the second section, an MCMC method named Gibbs sampler, is derived and compared

with EM in the Chapter 5.

4.1. The Expectation-Maximization Algorithm

In this section, we present important aspects of the EM derivations for inference

in SCPF. However, interested reader can find more details in Appendix A. In SCPF,

the observed variables are denoted by X and N . The latent variables of the model

is represented by S. The unknown parameters are shown as W and H. Hence, the

objective function of EM becomes the following:

Q(W,H|W (t), H(t)) = E
[

log p(N,X, S|W,H)

]

p(S|N,X,W,H)

(4.1)

where the posterior distribution of the latent variables can be calculated through:

p(S|N,X,W,H) = p(N,X, S|W,H)/p(N,X|W,H) (4.2)

4.1.1. Derivations

In this section, we first derive EM equations for SCPF which are very similar to

PF in cases where no missing data exists. Then, we present the derivations for missing

data to show the difference between two models.
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4.1.1.1. Fully Observed Data. The marginal log-likelihood, can be derived by marginal-

ising out the latent variable S [4]:

log p(N,X|W,H) = log
∑

S

p(N,X, S|W,H)

= log
∑

S

p(N |X)p(X|S)p(S|W,H)

= log
∏

k,i,j

p(xk,i,j|wk,i,:, hk,:,j)

= log
∏

k,i,j

PO(xk,i,j;
∑

r

wk,i,r, hk,r,j) (4.3)

which is a result of superposition property of Poisson random variables [43], meaning

that sum of Poisson random variables s1, s2, ..., sK with intensity parameters λ1, λ2,

..., λK is also a Poisson random variable whose intensity parameter is λ =
∑K

k=1 λk.

Note that at the second line the Equation 4.3, p(ni,j|x:,i,j) vanishes due to ni,j =
∑K

k=1 xk,i,j.

The posterior distribution of the latent variables consists of Multinomial distri-

butions as shown in Appendix A.1:

log p(S|N,X,W,H) =
∑

k,i,j

logM(sk,i,j,:;xk,i,j, pk,i,j,:)

where the cell probability pk,i,j,r is equal to
wk,i,rhk,r,j∑
r wk,i,r,hk,r,j

. Since sk,i,j,: is shown to be

a Multinomial random variable, the expectation of the latent variable sk,i,j,r can be

easily calculated as:

E
[
sk,i,j,r|wk,i,:, hk,:,j

]
= xk,i,jpk,i,j,r (4.4)

where expectation becomes a fraction of the observation xk,i,j.
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The objective function in Equation 4.1 can be written using Equation A.1:

E
[

log p(N,X, S|W,H)

]

p(S|N,X,W,H)

=
∑

k,i,j

(∑

r

(
E
[
sk,i,j,r|wk,i,:, hk,:,j

]

logwk,i,rhk,r,j − wk,i,rhk,r,j

− E
[

log Γ(sk,i,j,r + 1)

])

+ E
[

log δ(xk,i,j −
∑

r

sk,i,j,r)

]

+ log δ(ni,j −
∑

k

xk,i,j)

)
(4.5)

where the last three terms are merely constant for the maximization w.r.t. W and H.

Hence, one needs to maximize the following objective function:

Q(W,H|W (t), H(t)) =
∑

k,i,j,r

(
E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

]
logwk,i,rhk,r,j − wk,i,rhk,r,j

)
(4.6)

where the expectation of the latent variable s
(t)
k,i,j,r is a result of Equation A.4:

E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

]
= xk,i,jp

(t)
k,i,j,r

= xk,i,j
w

(t)
k,i,rh

(t)
k,r,j∑

r w
(t)
k,i,r, h

(t)
k,r,j

Finally, we present the fixed point equations for maximizing the objective function

Q(W,H|W (t), H(t)) whose details can be found in Appendix A.1:

w
(t+1)
k,i,r =

∑
j E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

]
∑

j h
(t)
k,r,j

=

∑
j xk,i,j

w
(t)
k,i,rh

(t)
k,r,j∑

r w
(t)
k,i,r,h

(t)
k,r,j∑

j h
(t)
k,r,j

=
w

(t)
k,i,r∑
j h

(t)
k,r,j

∑

j

xk,i,j
h

(t)
k,r,j∑

r w
(t)
k,i,r, h

(t)
k,r,j

(4.7)
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h
(t+1)
k,r,j =

∑
i E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

]
∑

iw
(t)
k,i,r

=

∑
i xk,i,j

w
(t)
k,i,rh

(t)
k,r,j∑

r w
(t)
k,i,r,h

(t)
k,r,j∑

iw
(t)
k,i,r

=
h

(t)
k,r,j∑
iw

(t)
k,i,r

∑

i

xk,i,j
w

(t)
k,i,r∑

r w
(t)
k,i,r, h

(t)
k,r,j

(4.8)

4.1.1.2. Missing Data. The derivations presented below follows a similar procedure

used in the previous subsubsection. For handling missing data, we make use of Mask

tensor M whose each entry mk,i,j becomes 1 or 0 when xk,i,j is observed or missing,

respectively. Hence, the SCPF marginal log-likelihood given in Equation 4.3 becomes

as follows:

log p(N,X|W,H) = log
∑

S

p(N,X, S|W,H)

= log
∑

S

p(N |X)p(X|S)p(S|W,H)

= log

[(∏

k,i,j

p(xk,i,j|wk,i,:, hk,:,j)mk,i,j

)

(∏

i,j

p(ñi,j|w:,i,:, h:,:,j,m:,i,j)

)]

=
∑

k,i,j

mk,i,j log(PO(xk,i,j;
∑

r

wk,i,rhk,r,j))

+
∑

i,j

log(PO(ñi,j;
∑

k

(1−mk,i,j)
∑

r

wk,i,rhk,r,j) (4.9)

where ñi,j = ni,j −
∑K

k=1 xk,i,jmk,i,j.
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Accordingly, Equation A.2 changes as the calculation of the posterior distribution

of the latent variables in S is updated:

log p(S|N,X,W,H) = log p(N,X, S|W,H)− log p(N,X|W,H)

=
∑

k,i,j

mk,i,j logM(sk,i,j,:;xk,i,j, pk,i,j,:)

+
∑

i,j

logM(s:,i,j,:; ñi,j, p:,i,j,:,m:,i,j) (4.10)

where ñi,j is shared among the latent variables in s:,i,j,: for which mk,i,j = 0.

Recall that when xk,i,j is not missing, i.e. mk,i,j = 1, the latent random variables

in sk,i,j,: were shown to be a Multinomial random variable so that the expectation of

sk,i,j,r is calculated easily. However, when xk,i,j is missing, i.e. mk,i,j = 0, the latent

variable sk,i,j,r becomes coupled with others in s:,i,j,: for which mk,i,j = 0. This, in

turn, results in a Multinomial random variable as well which allows calculating the

expectation of the latent variable sk,i,j,r.

Hence, the expectation of the latent variable sk,i,j,r can be given as a piecewise

function as follows:

E
[
sk,i,j,r|ñi,j, xk,i,j, wk,i,1:Rk

, hk,1:Rk,j

]
=




xk,i,jpk,i,j,r, if mk,i,j = 1,

ñi,jqk,i,j,r, if mk,i,j = 0,

where pk,i,j,r =
wk,i,rhk,r,j∑
r wk,i,r,hk,r,j

and qk,i,j,r =
wk,i,rhk,r,j∑

k(1−mk,i,j)
∑

r wk,i,r,hk,r,j
. This can be rewritten

as:

E
[
s

(t)
k,i,j,r|ñi,j, xk,i,j, w

(t)
k,i,:, h

(t)
k,:,j

]
=
mk,i,jwk,i,rhk,r,jxk,i,j∑

r wk,i,r, hk,r,j
+

(1−mk,i,j)wk,i,rhk,r,jñi,j∑
k(1−mk,i,j)

∑
r wk,i,r, hk,r,j

One can easily derive the fixed point equations for maximizing the objective

function Q(W,H|W (t), H(t)) by using the expectation of the latent variable sk,i,j,r given
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above:

w
(t+1)
k,i,r =

∑
j E
[
s

(t)
k,i,j,r|ñi,j, xk,i,j, w

(t)
k,i,:, h

(t)
k,:,j

]
∑

j h
(t)
k,r,j

=

∑
j

mk,i,jw
(t)
k,i,rh

(t)
k,r,jxk,i,j∑

r w
(t)
k,i,r,h

(t)
k,r,j

+
(1−mk,i,j)w

(t)
k,i,rh

(t)
k,r,j ñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r,h

(t)
k,r,j∑

j h
(t)
k,r,j

=
w

(t)
k,i,r∑
j h

(t)
k,r,j

∑

j

mk,i,jh
(t)
k,r,jxk,i,j∑

r w
(t)
k,i,r, h

(t)
k,r,j

+
(1−mk,i,j)h

(t)
k,r,jñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r, h

(t)
k,r,j
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h
(t+1)
k,r,j =

∑
i E
[
s

(t)
k,i,j,r|ñi,j, xk,i,j, w

(t)
k,i,:, h

(t)
k,:,j

]
∑

iw
(t)
k,i,r

=

∑
i

mk,i,jw
(t)
k,i,rh

(t)
k,r,jxk,i,j∑

r w
(t)
k,i,r,h

(t)
k,r,j

+
(1−mk,i,j)w

(t)
k,i,rh

(t)
k,r,j ñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r,h

(t)
k,r,j∑

iw
(t)
k,i,r

=
h

(t)
k,r,j∑
iw

(t)
k,i,r

∑

i

mk,i,jw
(t)
k,i,rxk,i,j∑

r w
(t)
k,i,r, h

(t)
k,r,j

+
(1−mk,i,j)w

(t)
k,i,rñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r, h

(t)
k,r,j

(4.12)

Please observe that the update equations of SCPF and PF are exactly same when

data is not missing, i.e. mk,i,j = 1 as the second components vanishes. However, in

the opposite case where data entries are missing, they differ because of the second

component given in Table 4.2.

Table 4.1. Update rules for Poisson Factorization with observation, template and

excitation matrices denoted by X, W and H, respectively.

Parameter Update rule

wi,r
w

(t)
i,r∑

j h
(t)
r,j

∑
j

h
(t)
r,jxi,j∑

r w
(t)
i,r ,h

(t)
r,j

hr,j
h
(t)
r,j∑

i w
(t)
i,r

∑
i

w
(t)
i,rxi,j∑

r w
(t)
i,r ,h

(t)
r,j
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Table 4.2. Update rules for Sum Conditioned Poisson Factorization with observation,

template and excitation tensors denoted by X, W and H, respectively.

Parameter Update rule

wk,i,r
w

(t)
k,i,r∑

j h
(t)
k,r,j

∑
j

[
mk,i,jh

(t)
k,r,jxk,i,j∑

r w
(t)
k,i,r,h

(t)
k,r,j

+
(1−mk,i,j)h

(t)
k,r,j ñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r,h

(t)
k,r,j

]

hk,r,j
h
(t)
k,r,j∑

i w
(t)
k,i,r

∑
i

[
mk,i,jw

(t)
k,i,rxk,i,j∑

r w
(t)
k,i,r,h

(t)
k,r,j

+
(1−mk,i,j)w

(t)
k,i,rñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r,h

(t)
k,r,j

]

4.1.2. Implementation

We have derived EM update equations for inference in SCPF which might seem

complicated to implement. Here, our goal is to present an efficient implementation of

the algorithm by using matrix multiplications, similarly to [4].

Figure 4.1.2 allows us to update the unknown parameters of the model in a

straightforward manner. We denote element-wise arithmetic operations of summation,

multiplication and division with .+, � and �, respectively. A ∗B is used for the inner

product of two matrices A and B. (A)T symbolizes the transpose operation applied to

a matrix A. Finally, 1 is a ones matrix of size I × J .

4.2. Gibbs sampler

We have described a Gibbs sampler in Section 2.3. Here, we adopt the algorithm

for inference in SCPF. Whilst other variants of Gibbs sampler could also be developed,

we use a very simple sampling scheme. As the latent variables and unknown parameters

in the model are W , H and S, samples are drawn from the following full conditional

distributions at each iteration:

h
(t)
k,r,j ∼ p(hk,r,j|W = W (t−1), H−hk,r,j = H

(t−1)
−hk,r,j , S = S(t−1), X = X(t−1), N = N)



26

Initialize the parameters: W (0) and H(0);

Set MX and ˆ̃N to zeros matrices of sizes I × J ;

for k = 1 to K do

MX ←MX .+ (Mk �Xk);

end for

Ñ ← N −MX;

for t = 1 to T do

for k = 1 to K do

X̂k ← W
(t)
k ∗H

(t)
k ;

ˆ̃N ← ˆ̃N .+ (1−Mk)� X̂k ;

Qx
k ←Mk �Xk � X̂k

QxH
k ← Qx

k ∗ (H
(t)
k )T ;

QxW ← (W
(t)
k )T ∗Qx

k;

end for

for k = 1 to K do

Qn
k ← ((1−Mk)� Ñ)� ˆ̃N ;

QnH
k ← Qn

k ∗ (H
(t)
k )T ;

QnW
k ← (W

(t)
k )T ∗Qn

k ;

1Wk ← 1 ∗ (H
(t)
k )T ;

1Hk ← (W
(t)
k )T ∗ 1;

end for

W (t+1) ← (W (t) � (QxH +QnH))� 1W ;

H(t+1) ← (H(t) � (QxW +QnW ))� 1H ;

end for

Figure 4.1. Pseudo-code for Expectation-Maximization (EM) Algorithm.
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w
(t)
k,i,r ∼ p(wk,i,r|W−wk,i,r

= W
(t−1)
−wk,i,r

, H = H(t), S = S(t−1), X = X(t−1), N = N)

s
(t)
k,i,j,r ∼ p(sk,i,j,r|W = W (t), H = H(t), S−sk,i,j,r = S

(t−1)
−sk,i,j,r , X = X(t−1), N = N)

At each iteration, we first sample from full conditional distribution of each entry of W .

Then, sampling is done for variables in H. Finally, we draw samples for each variable

in S.

4.2.1. Derivations

The complete derivations are presented in Appendix B. Here, we give sampling

schemes for the latent variables. The samples for the latent variables in W and H

are drawn from Gamma distributions whose parameters are updated with the previous

values of corresponding parameters and observations. Note that the derivations appear

very similar for W and H. However, the derivations of the full conditional distributions

for the latent variables in S differ from others. For these Poisson random variables, we

present a sampling procedure in which Multinomial distributions are used.

4.2.1.1. H Variables.

p(h
(t)
k,r,j|W

(t−1), H
(t−1)
−hk,r,j , S

(t−1), X(t−1), N) ∼ G

(
h

(t)
k,r,j; a

h
k,r,j +

I∑

i=1

s
(t−1)
k,i,j,r,

(
ahk,r,j/b

h
k,r,j +

I∑

i=1

w
(t−1)
k,i,r

)−1
)
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4.2.1.2. W Variables.

p(w
(t)
k,i,r|W

(t−1)

−w(t−1)
k,i,r

, H(t), S(t−1), X(t−1), N) ∼ G

(
w

(t)
k,i,r; a

w
k,i,r +

J∑

j=1

s
(t−1)
k,i,j,r,

(
awk,i,r/b

w
k,i,r +

J∑

j=1

w
(t)
k,i,r

)−1
)

4.2.1.3. S Variables. Previously in Subsection 4.1.1.2, we have showed that the pos-

terior distribution of the latent variables in S can be written as Multinomial distribu-

tions, giving the full conditional distributions, as well. Here, we omit the details of this

derivation and follow the result presented in Equation A.13.

Note that parameters of Multinomial random variables depend on the mask tensor

M as it denotes whether an observation variable xk,i,j is missing or not. In case of an

observed variable xk,i,j, i.e. mk,i,j = 1, the variables sk,i,j,: can be sampled from a

Multinomial distribution with the parameter vector pk,i,j,: where pk,i,j,r =
wk,i,rhk,r,j∑
r wk,i,r,hk,r,j

.

Here, the observed value of distribution is given by xk,i,j. For missing variables in x:,i,j,

we have a similar procedure in which observed value is replaced with ñi,j. This allows

us to sample the latent variables in s:,i,j,: which correspond to the missing variables

in x:,i,,j from a Multinomial distribution, as well. However, the parameters need to

be calculated differently. Entries of parameters, denoted by q, becomes as qk,i,j,r =

wk,i,rhk,r,j∑
k(1−mk,i,j)

∑
r wk,i,r,hk,r,j

.

Hence, if xk,i,j is observed, the following is used to sample:

s
(t)
k,i,j,: ∼M(s

(t)
k,i,j,:;x

(t)
k,i,j, p

(t)
k,i,j,:)

where p
(t)
k,i,j,r =

w
(t)
k,i,rh

(t)
k,r,j∑

r w
(t)
k,i,r,h

(t)
k,r,j

.
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For latent variables which correspond to the missing variables, one needs to use

the following sampling scheme:

s
(t)
:,i,j,: ∼M(s

(t)
:,i,j,:; ñi,j, q

(t)
:,i,j,:)

where q
(t)
k,i,j,r =

w
(t)
k,i,rh

(t)
k,r,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r,h

(t)
k,r,j

.

The samples generated after burn-in period, Tburn−in, can be used for prediction

based on the estimation of the latent variables:

E
[
sk,i,j,r|ni,j, xk,i,j, wk,i,r, hk,r,j

]
≈ 1

T − Tburn−in

T∑

t=Tburn−in

s
(t)
k,i,j,r

where s
(t)
k,i,j,r are samples at tth iteration.

Hence, the observation variables can be estimated by normalizing the sum of

expectations of the latent variables:

E
[
xk,i,j|ni,j, sk,i,j,r, wk,i,r, hk,r,j

]
=

∑Rk

r=1 E
[
sk,i,j,r|ni,j, xk,i,j, wk,i,r, hk,r,j

]
∑K

k=1

∑Rk

r=1 E
[
sk,i,j,r|ni,j, xk,i,j, wk,i,r, hk,r,j

]
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5. EXPERIMENTS AND RESULTS

In this chapter, various experiments are conducted to compare the inference al-

gorithms and show the properties of the SCPF model: interpretability and predictive

performance. First experiment is desgined on a synthetic data set simply for comparing

EM and Gibbs sampler. For interpretability, a binary data set is used and the model

is compared with its canonical form alternative: Logistic Matrix Factorization. The

predictive performance of the model is measured with an ordinal data set where the

canonical form alternative, Ordinal Matrix Factorization, is also used.

The data sets, experiment setups and results are described in the following sec-

tions.

5.1. Simulated Data

In this experiment, our aim is to compare the performance of Gibbs sampler and

EM algorithms for prediction of missing variables X. The synthetic data set used is

generated from SCPF model with the parameters K = 2, R = {5, 5}, N = 1, I = 9,

J = 100 meaning two components of X are formed with rank of 5. Also, the number

of samples are 100 where each sample is a binary valued vector of length 9. Hence, the

observations of the first component, X1, can be shown as in Figure 5.1.

Figure 5.1. Binary valued data set generated from the model synthetically.



31

Since we have used K = 2 and N = 1, each entry of xk,i,j becomes a Bernoulli

random variable. In EM, the expected value of xk,i,j is estimated as follows:

E
[
xk,i,j|ni,j, s1:K,i,j,1:Rk

, wk,i,1:Rk
, hk,1:Rk,j

]
= ni,j×
∑Rk

r=1 E
[
sk,i,j,r|ni,j, xk,i,j, wk,i,r, hk,r,j

]
∑K

k=1

∑Rk

r=1 E
[
sk,i,j,r|ni,j, xk,i,j, wk,i,r, hk,r,j

]

where the expectation becomes a fraction of ni,j.

In Gibbs sampler, we approximate to the expectation of xk,i,j by averaging the

corresponding samples for the observation variable xk,i,j:

E
[
xk,i,j|ni,j, sk,i,j,1:Rk

, wk,i,1:Rk
, hk,1:Rk,j

]
≈ 1

T − Tburn−in

T∑

t=Tburn−in

x
(t)
k,i,j

Figure 5.2 denotes the data set used with X1, the first component of the observa-

tion variables and the mask matrix M1 whose each entry m1,i,j equals to 0 for missing

variables and 1 for observed ones.

(a) Data matrix denoted by X1.

(b) Mask matrix denoted by M1.

Figure 5.2. (a,b) Subfigures denote the data matrix X1 and corresponding mask

matrix M1.
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The expected value of each entry x1,i,j are plotted in the Figure 5.3 which shows

that Gibbs sampler performs better than EM in restoration of missing variables. This

suggests that EM might be over-fitting the data as it uses point estimates of the

unknown parameters and latent variables. On the other hand, Gibbs sampler uses the

full conditional distribution of the variables, which might be the reason of having more

accurate estimations.

(a) Gibbs sampler.

(b) EM.

Figure 5.3. (a,b) Subfigures represent the expected values for each entry of the data

set given in Figure 5.2.

In order to show the performance of two algorithms for recovering the missing

variables in X, we have plotted a randomly selected subset of the samples and corre-

sponding expectations in Figure 5.4 and Figure 5.5, respectively.
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(a) A subset of data. (b) A subset of mask matrix.

Figure 5.4. (a) Each sample x1:I,j is reshaped to a square of size 3× 3 and plotted in

the given subplots. Corresponding mask matrix entries m1:I,j are also given in (b).

As can be seen from the Figure 5.5, Gibbs sampler provides closer estimates

for the missing parts of the data given in the Figure 5.4. However, we believe that

the full Bayesian treatment of the model would allow higher predictive performance

in estimating the missing parts. Hence,an important future work is to adapt Gibbs

sampler for estimating the hyperparameters of the model, as well.

(a) Gibbs sampler. (b) EM.

Figure 5.5. Each image is the expected value of observation variables in X provided

in the Figure 5.1.
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5.2. Binary Data

As a binary data set, we used the Swimmer data set which is a collection of

synthetically generated binary images. Each image consists of four ”limbs” each of

which can be in one of four positions. Figure 5.6 shows the data matrix, which is used

as the observation matrix of the first component of X. In Figure 5.7, we see samples

from the data set where each figure represents a reshaped version of a sample.

Figure 5.6. The figure shows the data matrix, which is used as the observation matrix

of the first component of X.

Figure 5.7. Each figure is a sample from the Swimmer data set.

We set the SCPF components as K = 2, x1,i,j = Y (i, j) and x2,i,j = 1 − x1,i,j

where Y denotes the data matrix given in Figure 5.6. As the data is binary valued,

cardinality matrix N becomes an ones matrix whose each entry is 1. With a similar
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notation, we can show that LMF models the data as follows:

Y (i, j) ∼ BE(σ(
∑

k

W (i, k)H(k, j))

where σ(·) is the sigmoid function and BE is Bernoulli distribution.

Two alternatives are used to factorize the Swimmer data set. In order to analyze

the models in terms of interpretability, we consider the template matrices inferred by

LMF and the first component of SCPF, named X1. Basis vectors in the template

matrices are reshaped into 2D images and plotted in Figure 5.8. This brings us to the

observation that the moment parametrization with SCFP allows a more interpretable

template matrix. Similar to PF and NMF with multiplicative update rules, SCPF also

learns by parts as each basis vector of the template matrix corresponds to a specific

characteristics in the data.

(a) LMF. (b) SCPF.

Figure 5.8. Each image is constructed by reshaping a basis vector in the template

matrix (the first one in the SCPF case) inferred by the models.

5.3. Ordinal Data

For ordinal data analysis, we use the MovieLens 100-K data set consisting of

100-K ratings from 943 users on 1,682 movies. Each rating can take a value from 1 to
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5 where 0 is used to show the absence of that rating.

The model can be used on ordinal data with the following setting: x1,i,j = Y (i, j)

for observed Y (i, j) and ni,j = 5. We use the models with K = 2 and K = 3 to test

the effect of component K.

The canonical form alternative of SCPF for ordinal data is Ordinal Matrix Factor-

ization (OMF) which is constructed with probit function. OMF is described in more

detail at [26]. We also compare the models with Gaussian [44] and Poisson Matrix

Factorizations [4].

5.3.1. Experiment Setup

In experiments, 5-fold cross validation is used where one splits data set randomly

into a training and a test set with 80% and 20% ratings. We repeat each experiment

for the latent ranks R ∈ {20, 50, 100}. The shape A and mean parameter B of SCPF

are fixed to 103 and 1/R, respectively. The parameters of Ordinal Matrix Factorization

(OMF) are kept as in the original paper [26] except that the latent rank is changed

according to the experiment setting. We set the maximum iteration number to 1000

for each algorithm. Burn-in period of Gibbs sampler for OMF is given as 500.

We present the results with the maximum a-posteriori estimates for SCPF. Pa-

rameter estimation in LMF and Gaussian Matrix Factorization (GMF) is carried out

through Stochastic Gradient Descent (SGD) with regularization. The Gibbs sampler

provided for OMF is used in the experiments.

5.3.1.1. Metrics. We measure the performance of the models with Root Mean Square

Error (RMSE), Mean Absolute Error (MAE) and top-K recommendation for test rat-

ings. Top-K recommendation performance is evaluated with the standard IR metrics
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Mean Average Precision (MAP) and Recall@k, where

avg − precisioni =
∑

j∈testi

Precision(rank(i, j))/|testi|

Recall@ki =
∑

j∈testi

1[rank(i, j) ≤ k]/min(k, |testi|)

Here, testi includes the movies that user i rated 5. and rank(i, j) denotes the position

of the item j in the recommendation list for user i.

5.3.2. Results

The results are presented in the Table 5.1 where we observe that SCPF gives a

higher average precision, indicating a higher ranking performance of the model. This

supports the idea of using the second component X2 which represents user’s’ dislikes

rather than using X1 only as in PF.

Note that we calculate MAP through the ranked recommend list regardless of its

length. But with recall@k, we also consider the length of recommendation lists. As

can be seen from the Table 5.1, SCPF results in higher values of recall@k in short lists

of length 10 and 20 only. Fortunately, this might be more useful for users since they

are more likely to observe only a short list.

Setting K > 2 does not bring an additional benefit in our experiments. In SCPF,

we factorize Ñ with X2:K , the components of X other than the first one. Hence,

increasing K actually correspond to a higher-rank factorization of Ñ , which might be

resulting in over-fitting. The lower performance with K = 3, can be explained by this

over-fit to training data sets. In order to find the correct number of factorizations K

and their latent dimensions R1:K , a model order selection procedure can be developed,

possibly leading to a higher performance of the model.
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Table 5.1. MovieLens 100-K experiment results. SCPF-K denotes the proposed

model with K components. R@k is abbreviation for Recall@k.

Model RMSE MAE MAP R@10 R@20 R@50

R=20

SCPF-2 0.961 0.743* 0.083* 0.113 0.165* 0.240*

SCPF-3 0.978 0.753 0.080 0.123* 0.150 0.219

PF 1.330 0.957 0.019 0.009 0.018 0.045

GMF 0.940* 0.744 0.071 0.098 0.132 0.239

OMF 0.980 0.762 0.041 0.058 0.086 0.174

R=50

SCPF-2 0.973 0.750 0.086* 0.133* 0.175* 0.255

SCPF-3 0.999 0.763 0.075 0.122 0.162 0.223

PF 1.393 1.031 0.020 0.018 0.036 0.099

GMF 0.926* 0.736* 0.076 0.112 0.165 0.285*

OMF 0.986 0.766 0.043 0.060 0.092 0.175

R=100

SCPF-2 0.997 0.763 0.084* 0.133* 0.180* 0.265

SCPF-3 1.016 0.771 0.074 0.121 0.167 0.266

PF 1.325 1.011 0.031 0.040 0.067 0.150

GMF 0.924* 0.734* 0.068 0.099 0.154 0.276*

OMF 0.999 0.778 0.037 0.054 0.080 0.158

5.4. Piano Roll Data

The experiments here aim to show the usefulness of the model in modeling time

series. Recall that the template matrices were previously shown to be interpretable

in Section 5.2. Now, we show that they can also be used as parameters of prior

distributions in time series analysis. For this, we use a piano roll data, a binary valued

data which we have extracted from Bach Chorales. A piano roll data X represents a

music such that xi,j denotes whether ith note is active at time index j or not.

The model is compared with PF in order to investigate the possible benefits of

using SCPF over PF. Consider the data presented in Figure 5.9 where x-axis and y-axis
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denote time and notes, respectively.

Figure 5.9. A piano roll data extracted from Bach Chorales.

For these experiments, we set the number of components in SCPF, K, to 2. Since

the data is binary valued, N naturally becomes 1. I is set to 25 as piano roll data is

acquired by ignoring the notes which are inactive during the whole play. Since the time

step is taken as 1 sec., the length of data J becomes 328 in this example. Finally, rank

is taken as each value in {10, 15}. Hence, the parameter settings for the experiments

are as follows: K = 2, N = 1, I = 25, J = 328 and R = {10, 15}.

For inference, we have used EM algorithm whose convergences are shown in Figure

5.10 where log-likelihood of SCPF converges to a higher value.

Figure 5.10. Convergence of log-likelihood of EM.
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In Figure 5.11, we observe that both models, PF and SCPF, leads to estimations

with similar patterns. However, SCPF restricts estimates to the interval of [0, 1] while

PF does not have such a constraint.

(a) Estimation for X by PF.

(b) Estimation for X1 by SCPF.

Figure 5.11. (a,b) The model estimates where inference is carried out via EM

algorithm.

The inferred basis vectors can be treated as prior parameters for modeling time

series. Consider modeling data presented in Figure 5.9. The corresponding template

matrices inferred by two models are given in Figure 5.12. A simple method can be

modeling these observations as mixtures of the basis vectors in the template matrix

given in Figure 5.12. Compared to the case where one starts from a randomly selected

parameter value in state space, a faster convergence may be attained thanks to the

prior beliefs extracted with the model.
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(a) Template Matrix by PF.

(b) Template Matrix by SCPF.

Figure 5.12. (a,b) Template matrices inferred by PF and SCPF with rank 10.

As can be seen from Figure 5.12, almost each basis vector contains 2 or 3 notes

co-occurring some of which correspond to simple chord structures that can be found

in the piano roll data. Note that this is not the case with PF.

In order to analyze the effect of the rank on expressiveness of basis vectors, we

have also conducted experiments with R = 15 and R = 5. In this case, the basis

vectors inferred are shown in Figure 5.13 and Figure 5.14.

We observe that as the number of latent dimensions increase the basis vectors

correspond to smaller parts of the data. For R = 15, we see that the basis vectors

mostly correspond to a single note. This is perhaps not surprising as the rank of the

data is also not very high. For generalization to different data sets, the selection of R

can be automatized by model order selection.



42

Table 5.2. Co-occurring notes found in each basis vector of the template matrix when

rank is equal to 10.

Basis id Notes

0 F5,B4,G#3

1 A#3,A#2,F#2

2 D#5,C5,B2

3 A#4,F#3

5 G#4,C#3

6 F#4,F#3

7 B3,D#3

8 C#4,F3

(a) Template Matrix by PF.

(b) Template Matrix by SCPF.

Figure 5.13. (a,b) Template matrices inferred by PF and SCPF with rank 15.

In Table 5.3, we have observed that each basis vector consists of 1 or 2 notes.

This might be a result of using a higher rank for factorization.



43

Table 5.3. Co-occurring notes found in each basis vector of the template matrix when

rank is equal to 15.

Basis id Notes

0 B3

1 F#5

2 C#5

3 A#4

4 C#3

5 D#5,C5

6 G#3

7 F5,B4

8 F#3

9 C#4,F3

10 D#5,B2

11 F#4,D#3

12 A#3,A#2

13 G#4,F3

14 F#4,F#2

In contrast to R = 15, the choice of lower rank of R = 5 result in the loss of

discovery for chord structures as notes start to mix in the basis vectors of the template

matrix.

To sum up, the experiments with varying ranks suggest that there is an optimum

value for the model to find the chord structures in the data. As PF did not infer chord

structures in our experiments, the proposed model can be a good choice for extracting

these musical structures, which might be useful in modeling music.
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(a) Template Matrix by PF.

(b) Template Matrix by SCPF.

Figure 5.14. (a,b) Template matrices inferred by PF and SCPF with rank 5.

Table 5.4. Co-occurring notes found in each basis vector of the template matrix when

rank is equal to 5.

Basis id Notes

0 F5,F#4,A#3,F#2

1 C#5,A#4,F#3

2 C#5,G#4,C#4,C#3

3 D#5,F#4,B3,D#3,B2

4 D#5,B4,G#3,F3
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6. CONCLUSION

In this work, we propose and investigate a model called Sum Conditioned Pois-

son Factorization for modeling bounded data such as Bernoulli, Binomial, Categorical

and Multinomial. The model extends Poisson Factorization by conditioning multiple

Poisson Factorization models on their sum. This allows to overcome the problem of

modeling observations with Poisson distribution whose support is unbounded.

While the proposed model still enjoys the interpretability property of Poisson

Factorization, it performs better in prediction tasks. We have shown interpretability of

the model on a binary data set, Swimmer data set, such that basis vectors in inferred

template matrix becomes explanatory. For testing its predictive performance, we have

conducted experiments with Movie-Lens 500-K, which have demonstrated promising

results.

We have also derived two algorithms for inference in the model: Gibbs sampler

and Expectation-Maximization. They are compared in a simple experiment on a data

set generated from the model synthetically. The results showed that Gibbs sampler

performs better than EM as the latter may be suffering from over-fitting due to the

use of point estimate for the variables. On the other hand, Gibbs sampler uses the full

conditional distributions of the variables, which might be the reason for giving more

information about the variables.

In the last experiment, we have employed the model on a piano roll data extracted

from Bach Chorales. The goal was to show the use of the model in finding prior

parameters that can be used for modeling time series. We have also showed that

the model allows discovering the chord structures in piano roll data thanks to the

basis vectors in the template matrix. In this sense, the model is compared to Poisson

Factorization, which did not provide similar chord structures. However, the optimal

value for the rank of factorization in Sum Conditioned Poisson Factorization may

depend on the data of interest.
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The experiments have demonstrated promising results for the proposed model.

Therefore, we believe that further studies on the inference and applications are crucial.

In that sense, one future work is to investigate the full Bayesian treatment of the model

with approximate methods such as Variational Bayes or Gibbs sampler, where the

hyperparameters of the model are also inferred. Another step is to develop variants of

the model, i.e. Coupled Sum Conditioned Poisson Factorization such that unobserved

properties of the model may be revealed.

In order to explore the model and its properties, we believe that applications

should be extended, as well. For instance, the model can be used with different data

sets in order to show its interpretability property. Additionally, we think that it would

be more convincing for demonstrating the performance of the model by extending the

experiments for the Collaborative Filtering problem. In this sequel, one may want

to employ the model on data sets such as Movie-Lens 1M, EachMovie, and NetFlix.

However, these are typically large-scale data sets, for which more scalable inference

algorithms need to be developed [31].
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APPENDIX A: EM DERIVATIONS

A.1. Fully Observed Data

In order to calculate the posterior distribution in Equation 4.2, we can rewrite

the terms on the right side in log-domain. The first term, the SCPF log-likelihood

function, is as follows:

log p(N,X, S|W,H) = log

(
p(N |X)p(X|S)p(S|W,H)

)

=
∑

k,i,j

(∑

r

logPO(sk,i,j,r;wk,i,rhk,r,j)

+ log δ(xk,i,j −
∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

)

=
∑

k,i,j

(∑

r

(
sk,i,j,r logwk,i,rhk,r,j − wk,i,rhk,r,j

− log Γ(sk,i,j,r + 1)
)

+ log δ(xk,i,j −
∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

)
(A.1)
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Combining Equations 4.2, A.1 and 4.3 leads to the following:

log p(S|N,X,W,H) = log p(N,X, S|W,H)− log p(N,X|W,H)

=
∑

k,i,j

(∑

r

logPO(sk,i,j,r;wk,i,rhk,r,j)

+ log δ(xk,i,j −
∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

)

−
∑

k,i,j

logPO(xk,i,j;
∑

r

wk,i,r, hk,r,j)

=
∑

k,i,j

(∑

r

logPO(sk,i,j,r;wk,i,rhk,r,j)

− logPO(xk,i,j;
∑

r

wk,i,r, hk,r,j)

+ log δ(xk,i,j −
∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

)
(A.2)

Poisson distributions in Equation A.2 can be rewritten in terms of their param-

eters:

∑

r

logPO(sk,i,j,r;wk,i,rhk,r,j)− logPO(xk,i,j;
∑

r

wk,i,r, hk,r,j)

=

(∑

r

(
sk,i,j,r logwk,i,rhk,r,j − wk,i,rhk,r,j − log Γ(sk,i,j,r + 1)

))

−

(
xk,i,j log(

∑

r

wk,i,r, hk,r,j)− (
∑

r

wk,i,r, hk,r,j)− log Γ(xk,i,j + 1)

)
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=

(∑

r

(
sk,i,j,r logwk,i,rhk,r,j − wk,i,rhk,r,j − log Γ(sk,i,j,r + 1)

))

−

(
(
∑

r

sk,i,j,r) log(
∑

r

wk,i,r, hk,r,j)− (
∑

r

wk,i,r, hk,r,j)− log Γ(xk,i,j + 1)

)

=

(∑

r

sk,i,j,r log
wk,i,rhk,r,j∑
r wk,i,r, hk,r,j

− log Γ(sk,i,j,r + 1)

)
+ log Γ(xk,i,j + 1) (A.3)

By incorporating the result of Equation A.3, we can observe that the posterior

distribution of the latent variables consists of Multinomial distributions:

log p(S|N,X,W,H) =
∑

k,i,j

(∑

r

logPO(sk,i,j,r;wk,i,rhk,r,j)

− logPO(xk,i,j;
∑

r

wk,i,r, hk,r,j)

+ log δ(xk,i,j −
∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

)

=
∑

k,i,j

(∑

r

sk,i,j,r log
wk,i,rhk,r,j∑
r wk,i,r, hk,r,j

− log Γ(sk,i,j,r + 1)

)

+ log Γ(xk,i,j + 1) + log δ(xk,i,j −
∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

=
∑

k,i,j

logM(sk,i,j,:;xk,i,j, pk,i,j,:)

where the cell probability pk,i,j,r is equal to
wk,i,rhk,r,j∑
r wk,i,r,hk,r,j

.
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Since sk,i,j,: is shown to be a Multinomial random variable, the expectation of the

latent variable sk,i,j,r can be easily calculated as:

E
[
sk,i,j,r|wk,i,:, hk,:,j

]
= xk,i,jpk,i,j,r (A.4)

where expectation becomes a fraction of the observation xk,i,j.

The objective function in Equation 4.1 can be written using Equation A.1:

E
[

log p(N,X, S|W,H)

]

p(S|N,X,W,H)

=
∑

k,i,j

(∑

r

(
E
[
sk,i,j,r|wk,i,:, hk,:,j

]

logwk,i,rhk,r,j − wk,i,rhk,r,j

− E
[

log Γ(sk,i,j,r + 1)

])

+ E
[

log δ(xk,i,j −
∑

r

sk,i,j,r)

]

+ log δ(ni,j −
∑

k

xk,i,j)

)
(A.5)

where the last three terms are merely constant for the maximization w.r.t. W and H.

Hence, one needs to maximize the following objective function:

Q(W,H|W (t), H(t)) =
∑

k,i,j,r

(
E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

]
logwk,i,rhk,r,j

− wk,i,rhk,r,j
)

(A.6)

where the expectation of the latent variable s
(t)
k,i,j,r is a result of Equation A.4:

E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

]
= xk,i,jp

(t)
k,i,j,r

= xk,i,j
w

(t)
k,i,rh

(t)
k,r,j∑

r w
(t)
k,i,r, h

(t)
k,r,j
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Finally, we conclude the fixed point equations for maximizing the objective func-

tion Q(W,H|W (t), H(t)):

∂Q(W,H|W (t), H(t))

∂wk,i,r
=
∑

j

(
E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

] 1

wk,i,r
− h(t)

k,r,j

)

=

(∑

j

E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

] 1

wk,i,r

)
−

(∑

j

h
(t)
k,r,j

)

= 0

w
(t+1)
k,i,r =

∑
j E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

]
∑

j h
(t)
k,r,j

=

∑
j xk,i,j

w
(t)
k,i,rh

(t)
k,r,j∑

r w
(t)
k,i,r,h

(t)
k,r,j∑

j h
(t)
k,r,j

(A.7)

=
w

(t)
k,i,r∑
j h

(t)
k,r,j

∑

j

xk,i,j
h

(t)
k,r,j∑

r w
(t)
k,i,r, h

(t)
k,r,j

∂Q(W,H|W (t), H(t))

∂hk,r,j
=
∑

i

(
E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

] 1

hk,r,j
− w(t)

k,i,r

)

=

(∑

i

E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

] 1

hk,r,j

)
−

(∑

i

w
(t)
k,i,r

)

= 0

h
(t+1)
k,r,j =

∑
i E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

]
∑

iw
(t)
k,i,r

=

∑
i xk,i,j

w
(t)
k,i,rh

(t)
k,r,j∑

r w
(t)
k,i,r,h

(t)
k,r,j∑

iw
(t)
k,i,r

=
h

(t)
k,r,j∑
iw

(t)
k,i,r

∑

i

xk,i,j
w

(t)
k,i,r∑

r w
(t)
k,i,r, h

(t)
k,r,j

(A.8)

A.2. Missing Data

The derivations presented below follows a similar procedure used in the previous

subsubsection. For handling missing data, we make use of Mask tensor M whose each

entry mk,i,j becomes 1 or 0 when xk,i,j is observed or missing, respectively. Hence, the
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SCPF marginal log-likelihood given in Equation 4.3 becomes as follows:

log p(N,X|W,H) = log
∑

S

p(N,X, S|W,H)

= log
∑

S

p(N |X)p(X|S)p(S|W,H)

= log

[(∏

k,i,j

p(xk,i,j|wk,i,:, hk,:,j)mk,i,j

)

(∏

i,j

p(ñi,j|w:,i,:, h:,:,j,m:,i,j)

)]

=
∑

k,i,j

mk,i,j log(PO(xk,i,j;
∑

r

wk,i,rhk,r,j))

+
∑

i,j

log(PO(ñi,j;
∑

k

(1−mk,i,j)
∑

r

wk,i,rhk,r,j) (A.9)

where ñi,j = ni,j −
∑K

k=1 xk,i,jmk,i,j.

Accordingly, Equation A.2 changes as the calculation of the posterior distribution

of the latent variables in S is updated:

log p(S|N,X,W,H) = log p(N,X, S|W,H)− log p(N,X|W,H)

=
∑

k,i,j

(∑

r

logPO(sk,i,j,r;wk,i,rhk,r,j)

+ log δ(xk,i,j −
∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

)

−
∑

k,i,j

mk,i,j log(PO(xk,i,j;
∑

r

wk,i,rhk,r,j))

−
∑

i,j

log(PO(ñi,j;
∑

k

(1−mk,i,j)
∑

r

wk,i,rhk,r,j)



58

=
∑

k,i,j

(∑

r

(mk,i,j + 1−mk,i,j)

logPO(sk,i,j,r;wk,i,rhk,r,j)

+ log δ(xk,i,j −
∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

)

−
∑

k,i,j

mk,i,j log(PO(xk,i,j;
∑

r

wk,i,rhk,r,j))

−
∑

i,j

log(PO(ñi,j;
∑

k

(1−mk,i,j)
∑

r

wk,i,rhk,r,j)

=
∑

k,i,j

(∑

r

mk,i,j logPO(sk,i,j,r;wk,i,rhk,r,j)

+
∑

r

(1−mk,i,j) logPO(sk,i,j,r;wk,i,rhk,r,j)

+ log δ(xk,i,j −
∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

)

−
∑

k,i,j

mk,i,j log(PO(xk,i,j;
∑

r

wk,i,rhk,r,j))

−
∑

i,j

log(PO(ñi,j;
∑

k

(1−mk,i,j)
∑

r

wk,i,rhk,r,j) (A.10)
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=
∑

k,i,j

(∑

r

mk,i,j logPO(sk,i,j,r;wk,i,rhk,r,j)

−mk,i,j log(PO(xk,i,j;
∑

r

wk,i,rhk,r,j))

+ log δ(xk,i,j −
∑

r

sk,i,j,r) + log δ(ni,j −
∑

k

xk,i,j)

)

+
∑

i,j

(∑

k,r

(1−mk,i,j) logPO(sk,i,j,r;wk,i,rhk,r,j)

−
(

log(PO(ñi,j;
∑

k

(1−mk,i,j)
∑

r

wk,i,rhk,r,j)

))
(A.11)

Poisson distributions in Equation A.11 can be rewritten in terms of their param-

eters:

=
∑

k,i,j

mk,i,j

((∑

r

sk,i,j,r log
wk,i,rhk,r,j∑
r wk,i,r, hk,r,j

− log Γ(sk,i,j,r + 1)

)
(A.12)

+ log Γ(xk,i,j + 1)

)
+ log δ(xk,i,j −

∑

r

sk,i,j,r)

+ log δ(ni,j −
∑

k

xk,i,j)

+
∑

i,j

((∑

k,r

(1−mk,i,j)sk,i,j,r log
wk,i,rhk,r,j∑

k(1−mk,i,j)
∑

r wk,i,r, hk,r,j

− (1−mk,i,j) log Γ(sk,i,j,r + 1)

)
+ log Γ(ñi,j + 1)

)

=
∑

k,i,j

mk,i,j logM(sk,i,j,:;xk,i,j, pk,i,j,:)

+
∑

i,j

logM(s:,i,j,:; ñi,j, p:,i,j,:,m:,i,j) (A.13)

where ñi,j is shared among the latent variables in s:,i,j,: for which mk,i,j = 0.

Recall that when xk,i,j is not missing, i.e. mk,i,j = 1, the latent random variables

in sk,i,j,: were shown to be a Multinomial random variable so that the expectation of
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sk,i,j,r is calculated easily. However, when xk,i,j is missing, i.e. mk,i,j = 0, the latent

variable sk,i,j,r becomes coupled with others in s:,i,j,: for which mk,i,j = 0. This, in

turn, results in a Multinomial random variable as well which allows calculating the

expectation of the latent variable sk,i,j,r.

Hence, the expectation of the latent variable sk,i,j,r can be given as a piecewise

function as follows:

E
[
sk,i,j,r

]
=




xk,i,jpk,i,j,r, if mk,i,j = 1,

ñi,jqk,i,j,r, if mk,i,j = 0,

where pk,i,j,r =
wk,i,rhk,r,j∑
r wk,i,r,hk,r,j

and qk,i,j,r =
wk,i,rhk,r,j∑

k(1−mk,i,j)
∑

r wk,i,r,hk,r,j
. This can be rewritten

as:

E
[
s

(t)
k,i,j,r|w

(t)
k,i,:, h

(t)
k,:,j

]
=
mk,i,jwk,i,rhk,r,jxk,i,j∑

r wk,i,r, hk,r,j
+

(1−mk,i,j)wk,i,rhk,r,jñi,j∑
k(1−mk,i,j)

∑
r wk,i,r, hk,r,j

One can easily derive the fixed point equations for maximizing the objective

function Q(W,H|W (t), H(t)) by using the expectation of the latent variable sk,i,j,r given

above:

w
(t+1)
k,i,r =

∑
j E
[
s

(t)
k,i,j,r

]
∑

j h
(t)
k,r,j

=

∑
j

mk,i,jw
(t)
k,i,rh

(t)
k,r,jxk,i,j∑

r w
(t)
k,i,r,h

(t)
k,r,j

+
(1−mk,i,j)w

(t)
k,i,rh

(t)
k,r,j ñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r,h

(t)
k,r,j∑

j h
(t)
k,r,j

=
w

(t)
k,i,r∑
j h

(t)
k,r,j

∑

j

mk,i,jh
(t)
k,r,jxk,i,j∑

r w
(t)
k,i,r, h

(t)
k,r,j

+
(1−mk,i,j)h

(t)
k,r,jñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r, h

(t)
k,r,j

(A.14)
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h
(t+1)
k,r,j =

∑
i E
[
s

(t)
k,i,j,r

]
∑

iw
(t)
k,i,r

=

∑
i

mk,i,jw
(t)
k,i,rh

(t)
k,r,jxk,i,j∑

r w
(t)
k,i,r,h

(t)
k,r,j

+
(1−mk,i,j)w

(t)
k,i,rh

(t)
k,r,j ñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r,h

(t)
k,r,j∑

iw
(t)
k,i,r

=
h

(t)
k,r,j∑
iw

(t)
k,i,r

∑

i

mk,i,jw
(t)
k,i,rxk,i,j∑

r w
(t)
k,i,r, h

(t)
k,r,j

+
(1−mk,i,j)w

(t)
k,i,rñi,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r, h

(t)
k,r,j

(A.15)
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APPENDIX B: GIBBS SAMPLER

B.1. Update for h
(t)
k,r,j

p(h
(t)
k,r,j|W

(t−1), H
(t−1)
−hk,r,j , S

(t−1), X(t−1), N) ∝ p(h
(t)
k,r,j,W

(t−1), H
(t−1)
−hk,r,j , S

(t−1),

X(t−1), N)

∝ p(h
(t)
k,r,j)p(s

(t−1)
k,1:I,j,r|h

(t)
k,r,j, w

(t−1)
k,1:I,r)

= p(h
(t)
k,r,j)

I∏

i=1

p(s
(t−1)
k,i,j,r|w

(t−1)
k,i,r , h

(t)
k,r,j)

Taking the logarithm leads to the following:

log(p(h
(t)
k,r,j|W

(t−1), H
(t−1)

−h(t)k,r,j

, S(t−1), X(t−1), N)) ∝ log p(h
(t)
k,r,j)

+
I∑

i=1

log p(s
(t−1)
k,i,j,r|w

(t−1)
k,i,r , h

(t)
k,r,j)

We now continue by plugging the distributions into the equation:

.. = log G(h
(t)
k,r,j; a

h
k,r,j, b

h
k,r,j/a

h
k,r,j) +

I∑

i=1

logPO(s
(t−1)
k,i,j,r;w

(t−1)
k,i,r h

(t)
k,r,j)

= (ahk,r,j − 1) log h
(t)
k,r,j − h

(t)
k,r,j(a

h
k,r,j/b

h
k,r,j)− log Γ(ahk,r,j)

+ ahk,r,j log(bhk,r,j/a
h
k,r,j)

+

[
I∑

i=1

−(w
(t−1)
k,i,r h

(t)
k,r,j) + s

(t−1)
k,i,j,r log(w

(t−1)
k,i,r h

(t)
k,r,j)− s

(t−1)
k,i,j,r!

]
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=+ (ahk,r,j − 1) log h
(t)
k,r,j − h

(t)
k,r,j(a

h
k,r,j/b

h
k,r,j) +

[
I∑

i=1

−w(t−1)
k,i,r h

(t)
k,r,j

+ s
(t−1)
k,i,j,r log h

(t)
k,r,j

]

= (ahk,r,j +
I∑

i=1

s
(t−1)
k,i,j,r − 1) log h

(t)
k,r,j − h

(t)
k,r,j(a

h
k,r,j/b

h
k,r,j +

I∑

i=1

w
(t−1)
k,i,r )

∝ log G(h
(t)
k,r,j; a

h
k,r,j +

I∑

i=1

s
(t−1)
k,i,j,r,

(
ahk,r,j/b

h
k,r,j +

I∑

i=1

w
(t−1)
k,i,r

)−1

)

B.2. Update for w
(t)
k,i,r

p(w
(t)
k,i,r|W

(t−1)

−w(t−1)
k,i,r

, H(t), S(t−1), X(t−1), N) ∝ p(w
(t)
k,i,r,W

(t−1)

−w(t−1)
k,i,r

, H(t), S(t−1),

X(t−1), N)

∝ p(w
(t)
k,i,r)p(s

(t−1)
k,i,1:J,r|w

(t)
k,i,rh

(t)
k,r,1:J)

= p(w
(t)
k,i,r)

J∏

j=1

p(s
(t−1)
k,i,j,r|w

(t)
k,i,r, h

(t)
k,r,1:J)

Similarly, we take the logarithm:

log(p(w
(t)
k,i,r|W

(t−1)

−w(t−1)
k,i,r

, H(t), S(t−1), X(t−1), N)) ∝ log p(w
(t)
k,i,r)

+
J∑

j=1

log p(s
(t−1)
k,i,j,r|w

(t)
k,i,r, h

(t)
k,r,j)
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We now continue by plugging the distributions into the equation:

.. = log G(w
(t)
k,i,r; a

w
k,i,r, b

w
k,i,r/a

w
k,i,r) +

I∑

j=J

logPO(s
(t−1)
k,i,j,r;w

(t)
k,i,rh

(t)
k,r,j)

= (awk,i,r − 1) logw
(t)
k,i,r − w

(t)
k,i,r(a

w
k,i,r/b

w
k,i,r)− log Γ(awk,i,r)

+ awk,i,r log(bwk,i,r/a
w
k,i,r)

+

[
J∑

j=1

−(w
(t)
k,i,rh

(t)
k,r,j) + s

(t−1)
k,i,j,r log(w

(t)
k,i,rh

(t)
k,r,j)− s

(t−1)
k,i,j,r!

]

=+ (awk,i,r − 1) logw
(t)
k,i,r − h

(t)
k,r,j(a

w
k,i,r/b

w
k,i,r) +

[
J∑

j=1

−w(t)
k,i,rh

(t)
k,r,j

+ s
(t−1)
k,i,j,r logw

(t)
k,i,r

]

= (awk,i,r +
J∑

j=1

s
(t−1)
k,i,j,r − 1) logw

(t)
k,i,r − h

(t)
k,r,j(a

w
k,i,r/b

w
k,i,r +

J∑

j=1

w
(t)
k,i,r)

∝ log G(w
(t)
k,i,r; a

w
k,i,r +

J∑

j=1

s
(t−1)
k,i,j,r,

(
awk,i,r/b

w
k,i,r +

J∑

j=1

w
(t)
k,i,r

)−1

)

B.3. Update for s
(t)
k,i,j,r

Previously in Subsection 4.1.1.2, we have showed that the posterior distribution

of the latent variables in S can be written as Multinomial distributions, giving the

full conditional distributions, as well. Here, we omit the details of this derivation and

follow the result presented in Equation A.13.

Note that parameters of Multinomial random variables depend on the mask tensor

M as it denotes whether an observation variable xk,i,j is missing or not. In case of an

observed variable xk,i,j, i.e. mk,i,j = 1, the variables sk,i,j,: can be sampled from a

Multinomial distribution with the parameter vector pk,i,j,: where pk,i,j,r =
wk,i,rhk,r,j∑
r wk,i,r,hk,r,j

.

Here, the observed value of distribution is given by xk,i,j. For missing variables in x:,i,j,

we have a similar procedure in which observed value is replaced with ñi,j. This allows

us to sample the latent variables in s:,i,j,: which correspond to the missing variables
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in x:,i,,j from a Multinomial distribution, as well. However, the parameters need to

be calculated differently. Entries of parameters, denoted by q, becomes as qk,i,j,r =

wk,i,rhk,r,j∑
k(1−mk,i,j)

∑
r wk,i,r,hk,r,j

.

Hence, if xk,i,j is observed, the following is used to sample:

s
(t)
k,i,j,: ∼M(s

(t)
k,i,j,:;x

(t)
k,i,j, p

(t)
k,i,j,:)

where p
(t)
k,i,j,r =

w
(t)
k,i,rh

(t)
k,r,j∑

r w
(t)
k,i,r,h

(t)
k,r,j

.

For latent variables which correspond to the missing variables, one needs to use

the following sampling scheme:

s
(t)
:,i,j,: ∼M(s

(t)
:,i,j,:; ñi,j, q

(t)
:,i,j,:)

where q
(t)
k,i,j,r =

w
(t)
k,i,rh

(t)
k,r,j∑

k(1−mk,i,j)
∑

r w
(t)
k,i,r,h

(t)
k,r,j

.


